Therapeutic Potential Effect of Broccoli Extract Induction of Apoptosis and Inhibition of Migration in Human HepG2 Cells

Author(s)

Aisha D. Alalwani , Enaya Abualnaser , Laila A. Hummdi ,

Download Full PDF Pages: 01-05 | Views: 19 | Downloads: 6 | DOI: 10.5281/zenodo.14685168

Volume 14 - January 2025 (01)

Abstract

This study was undertaken to investigate the anticancer effects of broccoli extract against liver cancer in vitro and to elucidate the underlying molecular mechanisms. MTT assay was used to monitor the proliferation rate. DAPI staining was used for apoptosis. Wound healing assays were used to monitor cell migration and invasion. Change in the cell morphology by Ic50 value was demonstrated. Sulforaphane extract of broccoli decreased the viability of the liver cancer HepG2 cells and exhibited an IC50 of 50 µM. DAPI staining revealed that Sulforaphane triggered apoptotic death of HepG2 cells. The results indicated that Sulforaphane is bioactive and effectively inhibits the proliferation of cancer cell lines: HEPG2 human liver cells. Sulforaphane is a potential anticancer agent and may be considered a lead molecule in the development of hepatocellular chemotherapy.

Keywords

Liver, apoptosis, migration, invasion, proliferation

References

Bosch, F. X., Ribes, J., & Borràs, J. (1999). Epidemiology of primary liver cancer. Seminars in Liver Disease, 19(3), 271–285. https://doi.org/10.1055/S-2007-1007117

Bruix, J., & Sherman, M. (2011). Management of hepatocellular carcinoma: an update. Hepatology (Baltimore, Md.), 53(3), 1020–1022. https://doi.org/10.1002/HEP.24199

Bryant, C. S., Kumar, S., Chamala, S., Shah, J., Pal, J., Haider, M., Seward, S., Qazi, A. M., Morris, R., Semaan, A., Shammas, M. A., Steffes, C., Potti, R. B., Prasad, M., Weaver, D. W., & Batchu, R. B. (2010). Sulforaphane induces cell cycle arrest by protecting the RB-E2F-1 complex in epithelial ovarian cancer cells. Molecular Cancer, 9, 47. https://doi.org/10.1186/1476-4598-9-47

Burnett, J. P., Lim, G., Li, Y., Shah, R. B., Lim, R., Paholak, H. J., McDermott, S. P., Sun, L., Tsume, Y., Bai, S., Wicha, M. S., Sun, D., & Zhang, T. (2017). Sulforaphane enhances the anticancer activity of taxanes against triple-negative breast cancer by killing cancer stem cells. Cancer Letters, 394, 52–64. https://doi.org/10.1016/J.CANLET.2017.02.023

Chiao, J. W., Chung, F. L., Kancherla, R., Ahmed, T., Mittelman, A., & Conaway, C. C. (2002). Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. International Journal of Oncology, 20(3), 631–636. https://doi.org/10.3892/IJO.20.3.631

Chung, Y. K., Chi-Hung Or, R., Lu, C. H., Ouyang, W. T., Yang, S. Y., & Chang, C. C. (2015). Sulforaphane down-regulates SKP2 to stabilize p27(KIP1) for inducing antiproliferation in human colon adenocarcinoma cells. Journal of Bioscience and Bioengineering, 119(1), 35–42. https://doi.org/10.1016/J.JBIOSC.2014.06.009

Cragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100(1–2), 72–79. https://doi.org/10.1016/J.JEP.2005.05.011

Devi, J. R., & Thangam, E. B. (2012). Mechanisms of anticancer activity of sulforaphane from Brassica oleracea in HEp-2 human epithelial carcinoma cell line. Asian Pacific Journal of Cancer Prevention : APJCP, 13(5), 2095–2100. https://doi.org/10.7314/APJCP.2012.13.5.2095

El-Serag, H. B., & Rudolph, K. L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 132(7), 2557–2576. https://doi.org/10.1053/J.GASTRO.2007.04.061

Fahey, J. W., Wade, K. L., Wehage, S. L., Holtzclaw, W. D., Liu, H., Talalay, P., Fuchs, E., & Stephenson, K. K. (2017). Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Molecular Nutrition & Food Research, 61(4). https://doi.org/10.1002/MNFR.201600766

Fimognari, C., Nüsse, M., Cesari, R., Iori, R., Cantelli-Forti, G., & Hrelia, P. (2002). Growth inhibition, cell-cycle arrest, and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis, 23(4), 581–586. https://doi.org/10.1093/CARCIN/23.4.581

Fofaria, N. M., Ranjan, A., Kim, S. H., & Srivastava, S. K. (2015). Mechanisms of the Anticancer Effects of Isothiocyanates. The Enzymes, 37, 111–137. https://doi.org/10.1016/BS.ENZ.2015.06.001

Gomaa, A. I., Khan, S. A., Toledano, M. B., Waked, I., & Taylor-Robinson, S. D. (2008). Hepatocellular carcinoma: epidemiology, risk factors, and pathogenesis. World Journal of Gastroenterology, 14(27), 4300–4308. https://doi.org/10.3748/WJG.14.4300

Herman-Antosiewicz, A., Johnson, D. E., & Singh, S. V. (2006). Sulforaphane causes autophagy to inhibit the release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Research, 66(11), 5828–5835. https://doi.org/10.1158/0008-5472.CAN-06-0139

Jee, H. G., Lee, K. E., Kim, J. Bin, Shin, H. K., & Youn, Y. K. (2011). Sulforaphane inhibits oral carcinoma cell migration and invasion in vitro. Phytotherapy Research : PTR, 25(11), 1623–1628. https://doi.org/10.1002/PTR.3397

Kumar, G., Tuli, H. S., Mittal, S., Shandilya, J. K., Tiwari, A., & Sandhu, S. S. (2015). Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 36(6), 4005–4016. https://doi.org/10.1007/S13277-015-3391-5

Li, C., Zhou, Y., Peng, X., Du, L., Tian, H., Yang, G., Niu, J., & Wu, W. (2014). Sulforaphane Inhibits Invasion via Activating ERK1/2 Signaling in Human Glioblastoma U87MG and U373MG Cells. PLoS ONE, 9(2). https://doi.org/10.1371/JOURNAL.PONE.0090520

Mi, L., Wang, X., Govind, S., Hood, B. L., Veenstra, T. D., Conrads, T. P., Saha, D. T., Goldman, R., & Chung, F. L. (2007). The role of protein binding in the induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Research, 67(13), 6409–6416. https://doi.org/10.1158/0008-5472.CAN-07-0340

Mitsiogianni, M., Koutsidis, G., Mavroudis, N., Trafalis, D. T., Botaitis, S., Franco, R., Zoumpourlis, V., Amery, T., Galanis, A., Pappa, A., & Panayiotidis, M. I. (2019). The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants, 8(4). https://doi.org/10.3390/ANTIOX8040106

Pledgie-Tracy, A., Sobolewski, M. D., & Davidson, N. E. (2007). Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Molecular Cancer Therapeutics, 6(3), 1013–1021. https://doi.org/10.1158/1535-7163.MCT-06-0494

Qazi, A., Pal, J., Maitah, M., Fulciniti, M., Pelluru, D., Nanjappa, P., Lee, S., Batchu, R. B., Prasad, M., Bryant, C. S., Rajput, S., Gryaznov, S., Beer, D. G., Weaver, D. W., Munshi, N. C., Goyal, R. K., & Shammas, M. A. (2010). Anticancer activity of a broccoli derivative, sulforaphane, in Barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Translational Oncology, 3(6), 389–399. https://doi.org/10.1593/TLO.10235

Thornalley, P. J. (2002). Isothiocyanates: mechanism of cancer chemopreventive action. Anti-Cancer Drugs, 13(4), 331–338. https://doi.org/10.1097/00001813-200204000-00001

Wong, M. C. S., Jiang, J. Y., Goggins, W. B., Liang, M., Fang, Y., Fung, F. D. H., Leung, C., Wang, H. H. X., Wong, G. L. H., Wong, V. W. S., & Chan, H. L. Y. (2017). International incidence and mortality trends of liver cancer: a global profile. Scientific Reports, 7. https://doi.org/10.1038/SREP45846

Wu, X., Zhou, Q. H., & Xu, K. (2009). Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica, 30(5), 501–512. https://doi.org/10.1038/APS.2009.50

Cite this Article: