Biochemical Effects of Nano-Silicon Dioxide (SiO2) on Sunflower (Helianthus annuus L.) Plants: with SEM-EDX Analysis.

Author(s)

Fusun Yurekli , Sibel Kilicaslan ,

Download Full PDF Pages: 01-11 | Views: 344 | Downloads: 79 | DOI: 10.5281/zenodo.7418611

Volume 11 - November 2022 (11)

Abstract

Silicon is among the most abundant elements on earth after oxygen. Studies have shown that silicon nanoparticles contribute to plant growth and development. Nano particles [NP] are important due to their unique properties associated with high surface-to-volume ratio, and they have many application areas including agricultural industry, pharmacy, and medicine. In this study, different sizes and concentrations of SiO2NP were applied to sunflower plants. Chlorophyll determination was made in leaf tissue, antioxidant enzyme activities, malondialdehyde (MDA), Si assay, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyzes were made in root and leaf tissues of sunflower treated with SiO2NP in different sizes and concentrations. According to the data we have obtained, it has been shown that silicon nanoparticles reduce the damage caused by abiotic stress together with the active defense system of plants. However, NPs are thought to trigger the formation of reactive oxygen species due to their increased antioxidant enzyme activities and cause anatomical changes, especially on the leaf surface and root tissue, as shown by SEM analysis

Keywords

Helianthus annuus L., Nano-Silicon Dioxide, Antioxidant Enzymes, SEM, EDX

References

 i.        Almutairi, Z.M. (2016). Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics Journal. 9 (1), 106-114.

ii.      Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N., Al-Otaibi, A. (2019a). Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 139, 1–10.

iii.    Attia, E.A., Elhawat. N. (2021). Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold [Tagetes erecta L.]. Scientia Horticulturae. v282, pp 110015 doi.org/10.1016/j.scienta.2021.110015

iv.     Beyer, W.F., Fridowich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161, 559–566.

v.       Bhat, J.A., Rajora, N., Raturi, G., Sharma, S., Dhiman, P., Sanand, S., Shivaraj, S.M., Sonah, H., Deshmukh, R. (2021). Silicon nanoparticles [SiNPs] in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 3,4019–4028.

vi.     Chandlee, J.M., Scandalios, J.G. (1984). Analysis of variants affecting the catalase development program in maize scutellum. Theo Appl Genet. 69, 71–77.

vii.   Deshmukh, R.K, Ma, J.F., Belanger, R.R. (2017). Editorial: Role of silicon in plants.   Frontiers in Plant Science. 8, 1858.

viii. El-Ramady, H., Alshaal, T., Elhawat, N., El-Nahrawy, E., Omara, A., El-Nahrawy, S., Elsakhawy, T., Ghazi, A., Abdalla, N., F´ari, M. (2018). Biological aspects of selenium and silicon nanoparticles in the terrestrial environments. In Phytoremediation: Management of Environmental Contaminants; Ansari AA, Gill SS, Gill R, Lanza G, Newman L, Eds.; Springer International Publishing:Cham, Switzerland, 6, pp. 235–264.

ix.     Elias, S.H., Mohamed, M., Nor-Anuar, A., Muda, K., Hassan, M.A.H.M., Othman, M.N., Chelliapan, S. (2014). Water hyacinth bioremediation for ceramic industry wastewater treatment-application of rhizofiltration system. Sains Malaysiana. 43(9), 1397–1403.

x.       Farhangi-Abriz, S., Torabian, S. (2018). Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255, 953–962.

xi.     Hoagland, D.R, Arnon, D.I. (1950). The water-culture method for growing plants without soil. Cali. Agric. Exp. Stat. Cir. 347, 1–32.

xii.   Hussain, A., Rizwan, M., Ali, Q., Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ. Sci. Pollut. Res. 26:7579–7588.

xiii. Karim, J., Mohsenzadeh, M. (2012). Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of Plant Physiology. 63[1], 119–123.

xiv. Konate, A., Wang, Y., He, X., Adeel, M., Zhang, P., Ma, Y., Ding, Y., Zhang, J., Yang, J., Kizitoa, S., Rui, Y., Zhang, Z. (2018). Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicology and Environmental Safety. 165, 547–554.

xv.   Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology. 1987.;148, 350–382.

xvi. Lukacova´. Z.,  Svubova´. R., Kohanova, J.,  Lux, A. (2013). Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul. 70, 89–103.

xvii.                       Madhava, R., K.V., Sresty, T.V.S. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Science. 157, 113–128.

xviii.                     Mahdieh, M., Habibollahi, N., Amirjani, M.R., Abnosi, M.H., Ghorbanpour, M. (2015). Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. J. Soil Sci. Plant Nutr. 15, 1050–1060.

xix. Milewska-Hendel, A., Gawecki, R., Zubko, M., Stróż, D., Kurczyńska, E. (2016). Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobotanica, 69 (4), 1694. doi.org/10.5586/aa.1694.

xx.   Miyake, C., Asada, K. (1992). Thylakoid bound ascorbate peroxidase in Spinach chloroplasts and photoregeneration of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiology. 33, 541–553.

xxi. Noctor, G., Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49(1), 249–279.

xxii.                       Rajput, V.D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K.K., Singh, Aç, van Hullebusch, E.D., Singh, R., Jatav, H.S., Choudhary, R. (2021). Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome. Plant Stress and Growth. Biology. 0, 791.

xxiii.                     Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H.M., He, X., Mbarki, S., Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A Critical Review. Front Chem.  12(5), 78. doi: 10.3389/fchem.2017.00078

xxiv.                      Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živčák, M., Ghorbanpour, M., El‑Sheery, N.I, Brestic, M. (2019). Application of silicon nanoparticles in agriculture. Biotech.  9(90), 2-11.

xxv.                        Sabo-Attwood. T., Unrine, J.M., Stone, J.W., Murphy, C.J., Ghoshroy, S., Blom, D., Bertsch, PM., Newman, L.A. (2012). Uptake, distribution and toxicity of gold nanoparticles in tobacco [Nicotiana xanthi] seedlings. Nanotoxicology. 6(4), 353-360.

xxvi.                      Siddiqui, M.H, Al-Whaibi, M.H. (2014). Role of nano-SiO₂ in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Biol Sci. 21, 13–17.

xxvii.                    Soundararajan, P., Manivannan, A., Ko, C.H., Jeong, B.R. (2017). Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire’. J Plant Growth Regul. 7, 16–34.

xxviii.                  Taylor, A.F., Rylott, E.L., Anderson, C.W., Bruce, N.C. (1998). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE, 9(4), 1–10.

xxix.                      Tuna, A.L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., Girgin, A.R. (2008). Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 62, 10–16.

xxx.                        Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N.S., Prabu, P. (2011). Influence of Nanosilica Powder on the Growth of Maize Crop [Zea Mays L.]. Int. J. Green Nanotechnol. 3, 180–190.

xxxi.                      Zanão, Júnior, L.A, Alvarez, Venegas, V.H., Fontes, R.L.F., Carvalho-Zanão, M.P., Dias-Pereira, J., Maranho, L.T., Pereira, N. (2017). Leaf anatomy and gas exchange of ornamental sunflower in response to silicon application. Biosci. J., Uberlândia. 33(4), 833–842.

Cite this Article: