Recent Progress in Lithium Ion Battery Technology
Author(s)
Yusuf A. S , Ramalan A. M , Umar M , Buba A. D. A ,
Download Full PDF Pages: 01-18 | Views: 499 | Downloads: 164 | DOI: 10.5281/zenodo.5341957
Abstract
This paper is aimed at giving a detailed review on the recent advancements in lithium ion battery technology focusing on the underlying principle; design and configuration; materials; fabrication techniques; application; and challenges of lithium ion batteries (LIBs). The first rechargeable Li-ion batteries with cathode of layered TiS2 and anode of metallic Li was reported by Whittingham while working at Exxon in 1976 but this invention was not successful due to the problems of Li dendrite formation and short circuit upon extensive cycling and safety concern. However, there was a turnaround when Goodenough offered a theoretical framework for possible materials for effective intercalation/deintercalation and Yohsino carried out the first safety test on Li-ion batteries to demonstrate their enhanced safety features. LIBs consist of two electrodes, anode and cathode, immersed in an electrolyte and separated by a polymer membrane; and works by converting chemical energy into electrical energy and vice versa through charging and discharging processes. Most of the LIB models are derived from the porous electrode and concentrated solution theories which mathematically describe charge/discharge and species transport in the solid and electrolyte phases across a simplified 1D spatial cell structure. The cathode materials can be categorized based on voltage, typically 2-Volt, 3-Volt, 4-Volt and 5-Volt and currently LiCoO2 and LiFePO4 are most widely used in commercial Li-ion batteries because of their good cycle life (>500 cycles). Carbon is a dominant anode material although there are other materials available such as Nexelion; the choice of anode materials significantly influences the electrochemical performances, including cyclability, charging rate, and energy density of Li-ion batteries. A typical liquid electrolyte is a solution of lithium salts in organic solvents which must be carefully chosen to withstand the redox environment at both cathode and anode sides and the voltage range involved without decomposition or degradation. Separators are essential components of Li-ion batteries and play a critical role to avoid direct physical contact between the cathode and anode, and prevents short circuit to occur. A number of benefits are offered by this technology such as lightweight, high energy density power sources for a variety of devices. However, cost is one of the major challenges in the development of LIBs, another issue that is yet to be resolved is that the battery capacity tends to fade upon electrochemical cycling. Hence, if the opportunities embedded in the LIB technology is properly harnessed, there will create an economically viable environment.
Keywords
Not Provided by Author
References
i Alarco, J., & Talbot, P. (2015, April 30). Charged up: the history and development of batteries. Retrieved from The Conversation: http://theconversation.com/charged-up-the-history-and-development-of-batteries-40372
ii Andrea, D. (2010). Battery Management Systems for Large Lithium-Ion Battery Packs. Artech House.
iii Baughman, R. H., Zakhidov, A. A., & deHeer, W. A. (2002). Carbon nanotubes-the route toward applications. Science, 297, 787–792.
iv Bazant, M. Z. (2013). Theory of chemical kinetics and charge transfer based on non-equilibrium thermodynamics. Accounts of Chemical Research, 46, 1144-1160.
v Bruce, P. G., Scrosati, B., & Tarascon, J.-M. (2008). Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 47(16), 2930–2946. doi:10.1002/anie.200702505
vi Chaturvedi, N. A., Klein, R., Christensen, J., Ahmed, J., & Kojic, A. (2012). Estimation of Lithium Transport Rate inLithium-ion Batteries -A Particle Filtering Approach. Workshop on Engine and Powertrain Control,Simulation and Modeling (pp. 116 - 121). Rueil-Malmaison, France: The International Federation of Automatic Control.
vii Che, G. L., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes forelectrochemical energy storage and production. Nature, 393, 346–349.
viii Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., & Tarascon, J.-M. (2008). From Biomass to aRenewable LiXC6O6 Organic Electrode for SustainableLi-Ion Batteries. Chemsuschem, 1, 348–355.
ix Chung, S. Y., & Chiang, Y. M. (2002). Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 1, 123–128.
x Croce, F., Appetecchi, G. B., Persi, L., & Scrosati, B. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature, 394, 456–458.
xi Dao, T. -S., Vyasarayani, C. P., & McPhee, J. (2012). Simplification and order reduction of lithium-ion battery model based onporous-electrode theory. Journal of Power Sources, 198, 329– 337.
xii Deng, D. (2015). Li-ion batteries: basics, progress, and challenges. Energy Science and Engineering, 3(5), 385–418. doi:10.1002/ese3.95
xiii Deng, D., & Lee, J. Y. (2013). Meso-oblate Spheroidsof Thermal-Stabile Linker-Free Aggregates withSize-Tunable Subunits for Reversible Lithium Storage. ACS Applied Materials and Interfaces, 6, 1173–1179.
xiv Deng, D., Kim, M. G., Lee, J. Y., & Cho, J. (2009). Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy and Environmental Science, 2, 818–837.
xv Deshpande, R. D. (2011). Understanding and Improvinglithium Ion Batteries through mathematical Modeling Andexperiments. Kentucky: University of Kentucky, USA.
xvi DeVidts, P., & White, R. E. (1997). Governing equations for transport inporous electrodes. Journal of the Electrochemical Society, 144(4), 1343-1353.
xvii Dimov, N., Xia, Y., & Yoshio, M. (2007). Practicalsilicon-based composite anodes for lithium-ionbatteries: Fundamental and technological features. Journal of Power Sources, 171, 886–893.
xviii Doyle, M., Fuller, T., & Newman, J. (1993). Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. Journal of The Electrochemical Society, 140(6), 1526–1533.
xix Dubal, D. P., Ayyad, O., V. Ruiz, V., & Gómez-Romero, P. (2015). Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews, 44(7), 1777-1790. doi: 10.1039/C4CS00266K
xx Dunning, J. (2016). The Inside Story of the Lithium Ion Battery.
xxi Ferguson, T. R. (2014). Lithium-ion Battery Modeling Using Non-equilibrium Thermodynamics. Massachusetts, USA: Massachusetts Institute of Technology.
xxii Goodenough, J. B. (2013). Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research, 46(5), 1053 - 1061. doi:10.1021/ar2002705
xxiii Goodenough, J. B., & Park, K. -S. (2013). The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 135(4), 1167–1176.
xxiv Goriparti, S., Miele, E., De Angelis, F., Fabrizio, E. D., Zaccaria, R. P., & Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421-443.
xxv Huggins, R. A. (2009). Advanced Batteries: Materials Science Aspects. New York, NY 10013, USA: Springer.
xxvi Huie, M. M., Bock, D., Takeuchi, E. S., Marschilok, A. C., & Takeuchi, K. J. (2015). Cathode materials for magnesium and magnesium-ion based batteries. Coordination Chemistry Reviews, 287, 15-27.
xxvii Idota, Y. K., Matsufuji, A., Maekawa, Y., & Miyasaka, T. (1997). Tin-based amorphous oxide: Ahigh-capacity lithium-ion-storage material. Science, 276, 1395–1397.
xxviii Islam, M. S., & Fisher, C. A. (2013). Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society Reviews, 43(1), 185-204.
xxix Kumar, T. P., Ramesh, R., Lin, Y. Y., & Fey, G. T. (2004). Tin-filled carbon nanotubes as insertionanode materials for lithium-ion batteries. Electrochemical Communication, 6, 520–525.
xxx LaVine, S. (2017, March 20). Has lithium-battery genius John Goodenough done it again? Colleagues are skeptical. Retrieved from Quartz: https://qz.com/929794/has-lithium-battery-genius-john-goodenough-done-it-again-colleagues-are-skeptical/
xxxi Lee, Y. J., Yi, H., Kim, W. -J., Kang, K., Yun, D. S., & Strano, M. S. (2009). Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 324, 1051–1055.
xxxii Levine, S. (2010). The Great Battery Race. Foreign Policy, 182, 88–95.
xxxiii Li, Z., Huang, J., Liaw, B. Y., Metzler, V., & Zhang, J. B. (2014). A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources, 254, 168-182.
xxxiv Liu, C., Neale, Z. G., & Cao, G. (2016). Understanding electrochemicalpotentials of cathode materialsin rechargeable batteries. Materials Today, 19(2), 109 - 123.
xxxv Marcicki, J., Conlisk, A. T., & Rizzoni, G. (2014). A lithium-ion battery model including electrical double layer effects. Journal of Power Sources, 251, 157-169.
xxxvi Megahed, S., & Scrosati, B. (1994). Lithium-ion rechargeable batteries. Journal of Power Sources, 51, 79–104.
xxxvii Miller, P. (2015). Automotive Lithium-Ion Batteries. Johnson Matthey Technology Review, 59(1), 4–13. doi:10.1595/205651315x685445
xxxviii Mizushima, K. J., Wiseman, P. J., & Goodenough, J. B. (1981). LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Solid State Ionics, 3 - 4, 171–174.
xxxix Newman, J., & Tiedemann, W. (1975). Porous-Electrode Theory with Battery Applications. AlChE Journal, 21(1), 25–41.
xl News. (2016, September 2). Samsung recall for Galaxy Note 7. Retrieved from The news in colour: http://www.news.com.au/finance/business/breaking-news/samsung-to-recall-phones-after-explosions/news-story/3ef0b353b48e94477a75e2f08cbb2312
xli Obrovac, M. N., & Chevrier, V. L. (2014). Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews, 114(23), 11444 –11502. doi:10.1021/cr500207g
xlii Obrovac, M. N., Christensen, L., Le, D. B., & Dahn, J. R. (2007). Alloy Design for Lithium-Ion Battery Anodes. Journal of The Electrochemical Society, 154, A849.
xliii Oswal, M., Paul, J., & Zhoa, J. (2010). A comparative study of Lithium Ion Batteries. AME 578 Project.
xliv Park, J.-K. (2012). Principles and Applications of Lithium Secondary Batteries. Germany: Wiley-VCH.
xlv Pistoia, G., & Nazri, G. -A. (2003). Lithium Batteries: Science and Technology. Kluwer : Academic Publishers.
xlvi Purushothaman, B. K., & Landau, U. (2006). Rapid Charging of Lithium Ion Batteries Using Pulsed Currents – A Theoretical Analysis. Journal of The Electrochemical Society, 153, A533-A542.
xlvii Richard. (2017, March 1). Goodenough’s All-Solid-State-Battery Cells. Retrieved from UPS Battery Center: http://www.upsbatterycenter.com/blog/goodenoughs-all-solid-state-battery-cells/
xlviii Roy, P., & Srivastava, S. K. (2015). Nanostructured anode materials for lithium ion batteries. Journal of Material Chemistry A, 3, 2454-2484. doi: 10.1039/C4TA04980B
xlix Su, L., Jing, Y., & Zhou, Z. (2011). Li ion battery materials with core–shell nanostructures. Nanoscale, 3, 3967-3983. doi:10.1039/C1NR10550G
l Tang, M., Carter, W. C., & Chiang, Y. -M. (2010). Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines. Annual Review of Materials Research, 40, 501-529. doi:10.1146/annurev-matsci-070909-104435
li Tarascon, J. M., & Armand, M. (2001). Issues andchallenges facing rechargeable lithium batteries. Nature, 414, 359–367.
lii Thomas, E. V., Bloom, I., Christophersen, J. P., & Battaglia, V. S. (2008). Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing. Journal of Power Sources, 184, 312 - 317.
liii UTNews. (2017, February 28). Lithium-Ion Battery Inventor Introduces New Technology for Fast-Charging, Noncombustible Batteries. Retrieved from UTNews: https://news.utexas.edu/2017/02/28/goodenough-introduces-new-battery-technology
liv Wang, X., Wen, Z., Liu, Y., & Wu, X. (2009). A novelcomposite containing nanosized silicon and tin asanode material for lithium ion batteries. Electrochimica Acta, 54, 4662–4667.
lv Wang, Y., Zeng, H. C., & Lee, J. Y. (2006). Highlyreversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials, 18, 645–649.
lvi Whittingham, M. S. (1976). Electrical Energy Storageand Intercalation Chemistry. Science, 192, 1126–1127.
lvii Wikipedia. (2017, July 31). Lithium-ion battery. Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Lithium-ion_battery
lviii Wikipedia. (2017b, August 7). Lithium-ion battery. Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Lithium-ion_battery#cite_note-FOOTNOTEAndrea2010229-130
lix Winter, M., & Besenhard, J. O. (1999). Electrochemical lithiation of tin and tin-based intermetallics andcomposites. Electrochim Acta, 45, 31–50.
lx Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104, 4303-4417.
lxi Yoshino, A. (2012). The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51, 5798–5800.
lxii Zhi, M., Xiang, C., Li, J., Ming Li, M., & Wu, N. (2013). Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 5(1), 72-88. doi:10.1039/C2NR32040A
lxiii Zhu, J., Ng, K. Y., & Deng, D. (2014). Porousolive-like carbon decorated Fe3O4 based additive-freeelectrodes for highly reversible lithium storage. Journal of Material Chemistry A, 2, 16008–16014.
Cite this Article: