One Missing Observation in Graeco Latin Square Design: An Approximate Analysis of Variance

Author(s)

Kupolusi, Joseph A. , Ojo, Oluwadare O. ,

Download Full PDF Pages: 01-08 | Views: 663 | Downloads: 135 | DOI:

Volume 10 - May 2021 (05)

Abstract

Background: Experimental results can seriously be affected by different degrees of variation that arise from unknown or uncontrollable design factors which is not of interested to the experimenter that may probably has effect on the response. Blocking is an extremely important design technique that can be used to systematically eliminate the effect of the uncontrollable design factors. Graeco-Latin Square design is used to eliminate three sources of variability; that is, it systematically allows blocking in three directions. Thus, rows, columns and Greek letters actually represent three restrictions on randomization. There are situations whereby one observation is occasionally missed in a Graeco Latin Square design of order P x P. In this paper, we proposed an approximate method for one missing observation in Graeco Latin Square Design of any order.
Results: The proposed approximate method was applied to a data set of Graeco Latin Square Design of order 4 and the results are presented in ANOVA tables. Based on this result, Mean Sum of Squares (MSE) reduced drastically compared to that of complete data set. Reduction in MSE is a clear indication that the proposed method can be used to obtain a better result with a minimum variance and unbiased estimate.

Conclusion: The result of the analysis indicated that the proposed approximate method for Graeco Latin Square is appropriate for estimation of missing observation through a simulation study of 1000 experimental runs. The result converged to the real data set. Hence, the method derived in this research is capable to handling the problem of missing observation in Graeco-Latin Square design.

Keywords

Latin Square, Graeco Latin Square, ANOVA, missing data, experimental error

References

                     i            Ai, M., Li, K., Liu, S., & Lin, D. K. (2013). Balanced incomplete Latin square designs. Journal of  Statistical Planning and Inference, 143(9), 1575–1582. https://doi.org/10.1016/j.jspi.2013.05.001

        ii            Allan, F. E., & Wishart, J. (1930). A method of estimating the yield of a missing plot in field experimental work. The Journal of Agricultural Science, 20(3), 399–406. https://doi.org/10.1017/S0021859600006912

      iii            Bartlett, M. S. (1937). Some examples of statistical methods of research in agriculture and applied biology. Supplement to the Journal of the Royal Statistical Society, 4, 137–183. https://doi.org/10.2307/2983644

       iv            Casselgren, C. J., & Häggkvist, R. (2013). Completing partial Latin squares with one filled row. Column and Symbol. Discrete Mathematics, 313, 1011–1017. https://doi.org/10.1016/j.disc.2013.01.019

         v            Cochran, W. G. (1957). Analysis of covariance: Its nature and uses. Biometrics, 13(3), 261–281.  https://doi.org/10.2307/2527916 

       vi            Coons, I. (1957). The analysis of covariance as a missing plot technique. Biometrics, 13(3), 387–405. https://doi.org/10.2307/2527922

     vii            Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete  data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39, 1–38.

   viii            Donovan, D. M., & Şule Yazıcı, E. (2014). A polynomial embedding of pairs of orthogonal  partial Latin squares. Journal of Combinatorial Theory, Series A, 126, 24–34. https://doi.org/10.1016/j.jcta.2014.04.003

       ix            Euler, R. (2010). On the completability of incomplete Latin squares. European Journal of  Combinatorics, 31, 535–552. https://doi.org/10.1016/j.ejc.2009.03.036

         x            Healy, M., & Westmacott, M. (1956). Missing values in experiments analysed on automatic  computers. Applied Statistics, 5, 203–206. https://doi.org/10.2307/2985421

       xi            Kramer, C. Y., & Glass, S. (1960). Analysis of variance of a Latin square design with missing  observations. Applied Statistics, 9, 43–50. https://doi.org/10.2307/2985758

     xii            Kittiwat, S. & Kanogkan, L. | (2017) One missing value problem in Latin square design of any  order: Exact analysis of variance, Cogent Engineering, 4:1, 1411222

   xiii            Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken:  John Wiley & Sons. https://doi.org/10.1002/9781119013563

   xiv            Mead, R., Gilmour, S. G., & Mead, A. (2012). Statistical principles for the design of  experiments: Applications to real experiments, Vol. 36. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139020879

     xv            Montgomery, D. C. (2008). Design and analysis of experiments (7th ed.). New York, NY: John  Wiley & Sons.

   xvi            Ott, R. L., & Longnecker, M. (2010). An introduction to statistical methods and data analysis  (6th ed.). Boston: Cengage Learning.

 xvii            Rubin, D. B. (1972). A non-iterative algorithm for least squares estimation of missing values in  any analysis of variance design. Applied Statistics, 136–141. https://doi.org/10.2307/2346485

xviii            Rubin, D. B. (1987). Multiple imputation for non-response in surveys. Hoboken: John Wiley & Sons. https://doi. org/10.1002/SERIES1345

   xix            Sirikasemsuk, K. (2016a). A review on incomplete latin square design of any order. In N. Rusli, W. M. Zaimi, K. A. Khazali, M. J. Masnan, W. S. Daud, N. Abdullah, …, Y. N. Yusuf (Eds.),

     xx            AIP Conference Proceedings 2016, (vol. 1775, pp. 030022). Melville: AIP Publishing.

   xxi            Sirikasemsuk, K. (2016b). One missing value problem in Latin square design of any order: Regression sum of squares. In 2016 Joint 8th International Conference on Soft computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (pp. 142–147). Japan: IEEE Press.

 xxii            Speed, T. P. (1992). Introduction to fisher (1926) the arrangement of field experiments. In S.  Kotz & N. L. Johnson (Eds.), Breakthroughs in statistics, Vol. 2 (pp. 71–81). New York, NY: Springer. https://doi. org/10.1007/978-1-4612-4380-9

xxiii            Wilkinson, G. N. (1958). Estimation of missing values for the analysis of incomplete data. Biometrics, 14(2), 257–286. https://doi.org/10.2307/2527789

xxiv            Yates, F. (1933). The analysis of replicated experiments when the field results are incomplete. Empire Journal of, Experimental Agriculture, 2(1), 129–142.

  xxv            Yates, F. (1936). Incomplete randomized blocks. Annals of eugenics, 7, 121–140. https://doi. org/10.1111/j.1469-1809.1936.tb02134.x

xxvi            Youden, W. J. (1937). Use of incomplete block replications in estimating tobacco-mosaic virus. Contributions from Boyce Thompson Institute, 9(1), 41–48.

xxvii            Zhang, H. (2013). 25 new r -self-orthogonal Latin squares. Discrete Mathematics, 313, 1746–1753. https://doi.org/10.1016/j.disc.2013.04.021

Cite this Article: