Interactions Eucalyptus Oil with the Hcov-229E as New Potential Anti-Coronavirus: Molecular Docking Studies

Author(s)

Mario Rowan Sohilait , Charlie Ester de Fretes ,

Download Full PDF Pages: 58-63 | Views: 601 | Downloads: 170 | DOI: 10.5281/zenodo.4260771

Volume 9 - October 2020 (10)

Abstract

Chemical composition in eucalyptus essential oil was evaluated for protein 6U7H HCoV-229E as anti-coronavirus. Six compounds and two anti-viral drugs approved by the FDA were tested in this study. The designed eucalyptus oil component chemistry significantly enhances HCoV-229E enzyme selectivity. The two ligands of 1.8-cyneol and favipiravir could dock into the active site of HCoV-229E successfully. The binding energies of -4.5 and -4.4 kcal/mol were obtained for two compounds respectively. Molecular docking study revealed the binding orientations of compounds in the active sites of HCoV-229E towards the design of potent inhibitors

Keywords

coronavirus, eucalyptus oil, HCoV-229E, molecular docking 

References

                 i.            AbdulHameed, M.D., Chaudhury, S., Singh, N., Sun, H., Wallqvist, A., Tawa, G.J. 2012. Exploring polypharmacology using a ROCS-based target fishing approach, J. Chem. Inf. Model, 52: 492-505.

      ii.            Astani, A., Schnitzler, P. 2014. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran J. Microbiol., 6(3): 149–155.

    iii.            Graham, R.L., Sparks, J.S., Eckerlem L.D., Sims, A.C., Denison, M.R.E. 2008. SARS coronavirus replicase proteins in pathogenesis. Virus Res., 133(1):88-100.

     iv.            Gleeson, M.P., Hersey, A., Hannongbua, S. 2011. In-silico ADME models: a general assessment of their utility in drug discovery application. Curr. Top. Med. Chem., 11: 358-381.

       v.            Jenkins, J.L., Kao, R.Y., Shapiro R. 2003. Virtual screening to enrich hit lists from high-throughput screening: a case study on small-molecule inhibitors of angiogenin. Proteins, 50: 81-93.

     vi.            Kellenberger, E., Rodrigo, J., Muller, P., Rognan, D. 2004. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins: Struct. Funct. Bioinf., 57: 225–242.

   vii.            Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J. 2004. Docking and scoring in virtual screening for drugs discovery: methods and applications. Nat. Rev. Drug Discov., 3: 935-949.

 viii.            Koehler, T.H., Villar, O.H. 2000. Design of screening libraries biased for pharmaceutical discovery. J . Comput. Chem., 21: 1145-1152.

     ix.            Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li., Z., Li., H., Jiang, H. 2010. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 38: W609-W614.

       x.            Li, Y., Lai, Y., Wang, Y., Liu, N., Zhang, F., Xu, P. 2016. 1,8-Cineol Protect Against Influenza-Virus-Induced Pneumonia in Mice. Inflammation, 39(4): 1582-1593.

     xi.            Lounkine, E., Keiser, M.J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J.L., Lavan, P., Weber, E., Doak, A.K., Cote, S., Shoichet, B.K., Urban, L. 2012. Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486: 361-367.

   xii.            Lupia, T., Scabini, S., Mornese Pinna, S., Di Perri, G., De Rosa, F.G., Corcione, S. 2019. Novel coronavirus (2019-nCoV) outbreak: A new challenge. J. Global Antimicrob. Resis., 21:22-27.

 xiii.            Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 30 (16): 2785-2791.

 xiv.            Ogunwande, I.A., Olawore, N.O., Adeleke, K.A., Konig, W.A. 2003. Chemical composition of the essential oils from then leaves of three Eucalyptus spesies growing in Nigeria. J. Essent. Oil Res., 15: 297-301.

   xv.            Peele, K.A., Durthi, C.P., Srihansa, T., Krupanidhi, S., Ayyagari, V.S., Babu, D.J., Indira, M., Reddy, A.R., Venkateswarulu, T.C. 2020. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19: 1-6.

 xvi.            Perez, R.M. 2003. Antiviral activity coumpound isolated from plants. Pharmaceut. Biol., 41(2):107-157.

xvii.            Prasad A, Prasad M. SARS-CoV-2: the emergence of a viral pathogen causing havoc on human existence. J. Genet., 2020; 99:37.

xviii.            Rao, P.N.P., Knaus, E.E. 2008. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 11(2):81s-110s.

 xix.            Rester, U. 2006. Dock around the Clock – Current Status of Small Molecule Docking and Scoring, QSAR Comb. Sci., 25: 605-615Schuster, D. 2010. 3D pharmacophores as tools for activity profiling. Drug Discov. Today: Technol., 7(4): e203-70.

   xx.            Shoichet, B. K., McGovern, S. L., Wei, B., Irwin, J. J. 2002. Lead discovery using molecular docking. Curr. Opin. Chem. Biol., 6: 439-446.

 xxi.            Sohilait, M.R., Pranowo, H.D., Haryadi, W., 2017. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation, 13(11): 356–359.

xxii.            Sohilait, M.R., Pranowo, H.D., Haryadi, W., 2018. Synthesis, in vitro and Molecular Docking Studies of 1-(3,4-Dimethoxy-phenyl)-5-(4-hydroxy3-methoxy-phenyl)-penta-1,4-dien-3-one as New Potential Anti-inflammatory. Asian Journal of Chemistry, 30(8): 1765-1770.

xxiii.            Tanrikulu, Y., Krüger, B., Proschak, E. 2013. The holistic integration of virtual screening in drug discovery. Drug Discov. Today, 18: 358-364.

xxiv.            Usachev, E.V., Pyankov, O.V., Usacheva, O.V., Agranovski, I.E. 2013. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. Journal of Aerosol Science, 59: 22-30.

xxv.            Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T. M., Murray, C. W., Taylor, R. D., Watson, P. 2004. Virtual screening using protein-ligand docking: avoiding artificial enrichment. J. Chem. Inf. Comput. Sci., 44: 793-806.

xxvi.            Yang, J.M., Shen, T.W.A. 2005. A pharmacophore‐based evolutionary approach for screening selective estrogen receptor modulators. Proteins, 59: 205-220.

xxvii.            Yu, R., Chen, L., Lan, R., Shen, R., Li, P. 2020. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 56: 1-6.

xxviii.            Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., Cheng, F. 2020. Network-based drug repusposing for novel coronavirus 2019-nCoV/SARS-CoV2. Cell Discov., 6, p.14.

Cite this Article: