Calculation of Electron Energy Spectrum of Quantum-Dimensional Structures

Author(s)

Dr. Ihor Yurchyshyn , Volodymyr Potyak , Vasyl Skrypnyk , Bohdan Kliuchevskyi , Vasyl Petriichuk ,

Download Full PDF Pages: 18-27 | Views: 980 | Downloads: 220 | DOI: 10.5281/zenodo.3456083

Volume 7 - November 2018 (11)

Abstract

It was studied a methodology to obtain the electron energy spectrum of a quantum well with infinitely high walls, an infinitely long cylindrical quantum wire, a superlattice of quantum wells and a stack of quantum dots. The specific examples of the spectra for nanostructures based on PbSe and PbS were provided. It was shown the possibility to use the results of calculation of the energy spectrum the simplest quantum-size structures for similar calculations in nanostructures of higher complexity and found the way to control the properties of a stack of quantum dots changing its geometric characteristics. 

Keywords

energy spectrum, nanostructures, quantum-size effects.

References

       i.            Pichanusakorn P., Bandaru P. Nanostructured thermoelectric // Materials Science and Engineering R, 67, pp. 19-63 (2010)

     ii.            Lin Y-M, Sun X, Dresselhaus M.S. Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires // Phys. Rev., 62, p. 4610 (2000).

    iii.            Hochbaum A.I. et al. Enhanced thermoelectric performance of rough silicon nanowires // Nature, 451, p. 163, (2007).

   iv.            Dingle R. in Advances in Solid State Physics, ed. H.J. Queisser, p. 21, Braunschweig: Pergamon-Vieweg (1975).

     v.            Dingle R., Wiegmann W., Henry C.H. Quantum States of Confined Carriers in Very Thin AlxGa1-xAs-GaAs-AlxGa1-xAs // Phys. Rev. Lett., 33, p. 827 (1974).

   vi.            Шифф Л. Квантовая механика. М.: Наука, 1, 473 с. (1978).

  vii.            Lin Yu-Ming, Dresselhaus M.S. Thermoelectric properties of superlattice nanowires // Physical Review B., 68, 075304 (2003).

viii.            Gudiksen M.S., Lauhon L.J., Wang J., Smith D., Lieber C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics // Nature, 415, p. 617 (2002).

   ix.            Аскеров Б.М. Электронные явления переноса в полупроводниках. М.:Наука. Гл. ред. физ.-мат. лит., 320 с. (1985).

     x.            Bhandari C.M. Chapters 4-6 in CRC Handbook of Thermoelectrics, ed. D.M. Rowe, CRC Press, 701 p. (1995).

   xi.            Lazarenkova O.L., Balandin A.A. Miniband formation in a quantum dot crystal // J. Appl. Phys., 89(10), p. 5509 (2001).

  xii.            Watt A., Eichman T., Rubinsztein-Dunlop H., Meredith P. Carrier Transport in PbS Nanocrystal Conducting Polymer Composites // Applied Physics Letters, 87(25), p. 253109-1 (2005).

xiii.            Choi J.J., Lim Y-F., Santiago-Berrios M.B., Oh M., Hyun B.R., Sun L., Bartnik A.C., Goedhart A., Malliaras G.G., Abrun H.D., Wise F.W., Hanrath T. PbSe Nanocrystal Excitonic Solar Sells // Nano Lett., 9(11), pp. 3749-3755 (2009).

xiv.            Rogacheva E.I., Tavrina T.V., Nashchekina O.N., Grigorov S.N., Nasedkin K.A., Quantum size effects in PbSe quantum wells // Appl. Phys. Lett., 80(15), pp. 2690-2692 (2002).

 xv.            Rogacheva E.I., Nashchekina O.N., Vekhov Y.O., Dresselhaus M.S., Cronin S.B., Effect of thickness on the thermoelectric properties of PbS thin films // Thin Solid Films, 423, pp. 115–118 (2003).

xvi.            Херман М. Полупроводниковые сверхрешетки. М.: Мир. с. 13 (1989).

xvii.            Толмачев В.В., Скрипник Ф.В. Физические основы электроники. М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 464 с. (2009).

Cite this Article: