Effect of Shz-1, a Cardiogenic Small Molecule, on Expression of Tropomyosin in Axolotl Heart
Author(s)
Dipak K. Dube , Sowmya Pinnamaneni , Syamalima Dube , Caitlin Welch , Runa Shrestha , Patricia M. Benz , Lynn Abbott , Bernard J. Poiesz ,
Download Full PDF Pages: 24-40 | Views: 922 | Downloads: 227 | DOI: 10.5281/zenodo.3408082
Abstract
A family of sulfonyl-hydrazone (Shz) small molecules including shz-1 was found to induce Nkx2.5 gene and subsequently -tropomyosin in P19CL6 cells. In order to understand the mechanism by which shz-1 ropomyosin , we employed Mexican axolotl ( Ambystoma mexicanum ) as the animal model, which we use in our laboratory for studying the structural/functional relationship of tropomyosin in relation to cardiogenesis and cardiac myofibrillogenesis. Tropomyosins are a family of actin binding proteins that show cell specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 tropomyosin genes, both TPM1 and TPM4 genes play pivotal roles in myofibrillogenesis as well as cardiac cointraperitoneally into juvenile axolotl, shz-1 augmented texpression of TPM2 transcript was also increased. HOWEVER, TPM3 and cardiac TnT expression remained unchanged. In contrast to transcript expression, our western blot analysis with sarcomeric tropomyosin-specific antibodies did not show any significant increase in tropomyosin expression in shz-1 treated striated muscles. Similarly, western blot analysis with extracts of whole embryos failed to record any increases in tropomyosin expression in embryos maintained for four days in the presence or absence of 5-1. The contradictory results of transcript analysis by RT-PCR and protein analysis by western blotting strongly suggest that sarcomeric tropomyosin transcripts in axolotl heart may undergo translational control similar to that had been proposed in t-ablated mice.
Keywords
Ambystoma mexicanum, Shz-1, Nkx2.5, sarcomeric tropomyosin, gene expression
References
- Biben, C. and Harvey, R.P. (1997). Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11:1357-1369.
- Bordzilovskaya, N., Detlaff, T.A., Duhon, S., and Malacinski, G.M. (1989). Developmental-stage series of axolotl embryos, in Developmental Biology of the Axolotl (JB Armstrong and GM Malacinski, ed), pp201-221, Oxford University Press, New York, NY.
- Chen, C.Y. and Schwartz, R.J. (1996). Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol. 16:6372-6384.
- Denz, C.R., Narshi, A., Zajdel, R.W., Dube, D.K. (2004) Expression of a novel cardiac-specific tropomyosin isoform in humans. Biochem. Biophys. Res. Commun. 320: 1291-1297.
- Fleenor, D.E., Hickman, K.H., Lindquester, G.J. Devlin, R.B. (1992) Avian cardiac tropomyosin gene priduces tissue-specific isoforms throuth alternative splicing. J.Muscle Res.Cell Motil. 13: 55-63.
- Hardy, S., Theze, N., Lepetit, D., Allo, M-R., and Thiebaud, P. (1995). The Xenopus laevis TM-4 gene encodes non-muscle and cardiac tropomyosin isoforms through alternative splicing. Gene. 156: 265-270.
- Humphrey, R.R. (1972). Genetic and experimental studies on a mutant gene (c) determining absence of heart action in embryos of the Mexican axolotl (Ambystoma mexicanum). Dev Biol. 27: 365-375.
- Lees-Miller J, Helfman D. The molecular basis for tropomyosin isoform diversity. Bioessays. (1991). 13: 429437.
- Lemanski, L.F. (1973). Morphology of developing heart in cardiac lethal mutant Mexican axolotls, Ambystoma mexicanum. Dev Biol. 33: 312-333.
- Lemanski, L.F. (1979). Role of tropomyosin in actin filament formation in embryonic salamander heart cells. J Cell Biol. 82: 227-238.
- Lien, C-L., Wu, C., Mercer, B., Webb, R., Richardson, J.A., and Olson, E. (1999) Control of early cardiac-specific transcription of Nkx2.5 by a GATA-dependent enhancer. Development. 126: 75-84.
- Luque, E.A., Spinner, B.J., Dube, S., Dube, D.K., Lemanski, L.F. (1997). Differential expression of a novel isoform of alpha-tropomyosin in cardiac and skeletal muscle of the Mexican axolotl (Ambystoma mexicanum). Gene 185 :175–180.
- Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, E., Robb, L. and Harvey, R. P. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2.5 Genes and Development. 9: 1654-1666.
- Moskowitz, I.P., Kim, J.B., Moore, M.L., Wolf, C.M., Peterson, M.A., Shendure, J., Nobrega, M.A., Yokota, Y., Berul, C., Izumo, S., Seidman, J.G., Seidman, C.E.(2007) A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell. (2007). 129: 1365-76.
- Muthuchamy. M., Pajak, L., Howles, P., Doetschman., Wieczorek, D. F. (1993). Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol Cell Biol. 13: 3311-3323.
- Muthuchamy, M, Grupp, I., Grupp G, Toole , B., Kier A, Boivin G, Neumann, J., Wieczorek , D.F. (1995). Molecular and physiological effects of overexpressing striated -tropomyosin in the adult murine heart. J Biol.Chem. 270: 30593 – 30603.
- Nam, C., Yamamuchi, H., Nakayama, H., Doi, K. (2006) Etoposide induces apoptosis and cell cycle arrest of neuroepithelial cells in a p53-related manner. Neurotoxicol Teratol. 28: 664-672.
- Narshi, A., Denz, C.R., Nakatsugawa, M., Zajdel, R.W., Dube, S., Poiesz, B.J., Dube, D.K. (2005). Cardiac myofibril formation is not affected by modification of both N- and C-termini of sarcomeric tropomyosin. Cardiovasc.Toxicol. 5: 1-8.
- Pittenger, M.F., Kazzaz, J.A., Helfman, D.M. (1994). Functional properties of nonmuscle tropomyosin isoforms. Curr Opin Cell Biol 6:96–104.
- Rajan, S., Jagatheesan, G., Karam, C.N., Alves, M.L., Bodi, I., Schwartz, A., Bulcao, C.F., D’Souza, K.M., Akhter, S.A., Boivin, G.P., Dube, D.K., Petrashevskaya, N., Herr, A.B.,Hullin, R., Liggett, S.B., Wolska, B.M., Solaro,R.J., Wieczorek, D.F. (2010). Molecular and functional characterization of a novel cardiac specific human tropomyosin isoform. Circulation 121: 410–418.
- Rethinasamy,P., Muthuchamy, M., Hewett, T., Boivin, G., Wolska,B.M., Evans, C., Solaro, J., Wieczorek, D.F. (1998) Molecular and Physiological Effects of a-Tropomyosin Ablation in the Mouse. Circ Res. 82: 116-123.
- Ruiz-Lozano, P., Hixon, M.L., Wagner, M.W., Flores A.I, Ikawa, S., Baldwin, A.S. Jr, Chien, K.R., Gualberto, A. (1999). p53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiacexpression. Cell Growth Differ. 10: 95-306.
- Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M.G., Mary G., Garry, D.J., Longgood, J., Frantz, D.E., Olson, E.N., Hsieh, J., and Schneider, J. W. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc. Natl.Acad. Sci.U.S. 105: 6063-6068.
- Schevzov, G., Whittaker, S., Fath, T., Lin. J.J-C., and Gunning, P.W. (2011) Tropomysin isoforms and reagents. BioArchitecture. 1: 135-164.
- Sferrazza, G-F., Zhang, C., Jia, P., Lemanski, S.L., Athauda, G., Stassi, A., Kristine Halager, K., Maier, J.A., Rueda-de-Leon, E., Gupta, A., Dube, S., Huang, X., Prentice, H.M., Dube, D.K., Lemanski, L.F.(2007). Role of Myofibril-Inducing RNA in cardiac TnT expression in developing Mexican axolotl.Biochem.Biophys.Res.Commun. 357: 32-37.
- Small, E.M., Warkman, A.S., Wang, D-Z., Sutherland, L.B., Olson, E.N., and Kreig, P.A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development. 132: 987 – 997.
- Spinner, B.J., Zajdel, R.W., McLean, M.D., Denz, C.R., Dube, S., Mehta, S., Choudhury, A., Nakatsugawa, M., Dobbins, N., Lemanski, L.F. and Dube, D.K. (2002). Characterization of a TM-4 type tropomyosin that is essential for myofibrillogenesisand contractile activity in embryonic hearts of the Mexicanaxolotl. J Cell Biochem 85: 747–761.
- Tanaka, M., Kasahara, H., Bartunkova, S., Schinke, M.,Komuro, I., Inagaki, H., Lee, Y., Lyons, G. and Izumo, S. (1998). Vertebrate homologs of tinman and bagpipe. Roles of the homeobox genes in cardiovascular development. Dev. Genet. 22, 239-249.
- Thomas, A., Rajan, S., Thurston, H.L., Masineni, S.N., Dube, P. Bose, A., Muthu, V., Dube, S., Wieczorek, D.F., Poiesz, B.J., and Dube, D.K. (2010) Expression of a novel tropomyosin isoform in axolotl heart and skeletal muscle. J.Cell.Biochem. 110: 875-881.
- Thurston, H.L., Prayaga, S., Thomas, A., Guharoy, V., Dube, S., Poiesz, B.J., Dube, D.K. (2009). Expression of Nkx2.5 in wild type, cardiac mutant, and thyroxine-induced metamorphosed hearts of the Mexican axolotl. Cardiovas.Toxicol. 9: 13-20.
- Wang, J., Sanger, J.M., Kang, S., Thurston, H.L., Abbott, L.Z., Dube, D.K., Sanger, J.W. (2007). Ectopic expression and dynamics of TPM1myofibrils of avian myotubes. Cell Motil Cytoskeleton 64: 767–776.
- Zajdel, R.W., McLean, M.D., Lemanski, S.L., Muthuchamy, M., Wieczorek, D.F., Lemanski, L.F., and Dube, D.K. (1998) Ectopic expression of tropomyosin promotes myofibrillogenesis in mutant axolotl hearts. Dev Dyn 213:412-420.
- Zajdel, R.W., Dube, D.K., and Lemanski, L.F. (1999). The cardiac mutant Mexican axolotl is a unique animal model for evaluation of cardiac myofibrillogenesis. Exp Cell Res. 248:557-566
- Zajdel, R.W., Denz, C.R., Lee, S., Dube, S., Ehler, E., Perriard, E., Perriard, J-C., and Dube, D.K. (2003). Identification, Characterization, and Expression of a Novel -Tropomyosin Isoform in Cardiac Tissues in Developing Chicken. J.Cell. Biochem. 89: 427-439.
- Zajdel, R.W., Denz, C.R., Narshi, A., Dube, S., and Dube, D.K. (2005). Anti-sense mediated inhibition of expression of the novel striated tropomyosin isoform TPM1kappa disrupts myofibril organization in embryonic axolotl hearts. J Cell Biochem. 95: 840-848.
- Zhang, C., Jia, P., Huang, X., Sferrazza, G.F., Athauda, G., Achary, A.P., Wang, J., Lemanski, S.L., Dube, D.K. and Lemanski, L.F. (2009). Myofibril-Inducing RNA (MIR) is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts. J. Biomed Science. 16: 81.