Derivation of Galaxy Rotation Curve from the Universal Wave Function Interpretation of String Theory
Author(s)
Download Full PDF Pages: 01-05 | Views: 1650 | Downloads: 293 | DOI: 10.5281/zenodo.3446056
Abstract
The rotation curve of a disc galaxy plots the orbital speeds of visible stars or gas increasing with the radial distance from the galaxy center. This differs from the orbital speeds of star/planets and planet/moons systems in which the velocity of planets or moons orbiting around the stars or planets decreases with distance. Dark matter and other schemes have been proposed to explain the rotation curve. In this paper, we propose and demonstrate that it is possible to derive the rotation curve from new development in string theory, the universal wave function interpretation of string theory. We show that there exist long-range vibrations in the universal wavefunction interpretation of string theory. The energy produced by these long-range vibrations may explain rotation curves with the orbital speeds increasing the radial distance from the galaxy center
Keywords
Rotation Curve, Universal wave, String Theory
References
i. Rubin, V.; Thonnard, N.; Ford, W. K. Jr. (1980). "Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". The Astrophysical Journal. 238: 471–487.
ii. Begeman, K. G.; Broeils, A. H.; Sanders, R.H. (1991). "Extended Rotation Curves of Spiral Galaxies: Dark Haloes and Modified Dynamics." Monthly Notices of the Royal Astronomical Society. 249 (3): 523–537.
iii. Jog, C. J. (2002). "Large-scale asymmetry of rotation curves in lopsided spiral galaxies" (PDF). Astronomy and Astrophysics. 391 (2): 471–479.
iv. Rubin, V.C.; Thonnard, N.; Ford, W.K. Jr. (1978). "Extended rotation curves of high-luminosity spiral galaxies. IV - Systematic dynamical properties, SA through SC". The Astrophysical Journal Letters. 225: L107–L111.
v. Persic, M.; Salucci, P.; Stel, F. (1996). "The universal rotation curve of spiral galaxies - I. The dark matter connection." Monthly Notices of the Royal Astronomical Society. 281 (1): 27–47.
vi. Navarro, J. F.; Frenk, C. S.; White, S. D. M. (1996). "The Structure of Cold Dark Matter Halos". The Astrophysical Journal. 463: 563.
vii. Merritt, D.; Graham, A.; Moore, B.; Diemand, J.; Terzić, B. (2006). "Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models". The Astronomical Journal. 132 (6): 2685–2700.
viii. Merritt, D.; Navarro, J. F.; Ludlow, A.; Jenkins, A. (2005). "A Universal Density Profile for Dark and Luminous Matter?". The Astrophysical Journal. 624 (2): L85–L88.
ix. Bertone, G.; Hooper, D.; Silk, J. (2005). "Particle dark matter: Evidence, candidates and constraints". Physics Reports. 405 (5–6): 279–390.
x. Bergstrom, L. (2000). "Non-baryonic dark matter: Observational evidence and detection methods". Reports on Progress in Physics. 63 (5): 793–841.
xi. S. S. McGaugh; W. J. G. de Blok (1998). "Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence". Astrophysical Journal. 499 (1): 66–81.
xii. S. S. McGaugh (2011). "Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies". Physical Review Letters. 106 (12): 121303.
xiii. S. S. McGaugh; M. Milgrom (2013). "Andromeda Dwarfs in Light of Modified Newtonian Dynamics". The Astrophysical Journal. 766 (1): 22.
xiv. Michael Green, John H. Schwarz and Edward Witten (1987) Superstring theory. Cambridge University Press. Vol. 1: Introduction. ISBN 0-521-35752-7. Vol. 2: Loop amplitudes, anomalies and phenomenology. ISBN 0-521-35753-5.
xv. Polchinski, Joseph (1998) String theory. Cambridge University Press. Vol. 1: An Introduction to the Bosonic String. ISBN 0-521-63303-6.Vol. 2: Superstring Theory and Beyond. ISBN 0-521-63304-4.
xvi. Rulin Xiu, “Dark Energy and Estimate of Cosmological Constant from String Theory”. J Astrophys Aerospace Technol 2017, 5 (1): 141
xvii. Zhi Gang Sha and Rulin Xiu, “String Theory Explanation of Large-Scale Anisotropy and Anomalous Alignment”. Accepted to be published in Reports in Advances of Physical Sciences
xviii. Zhi Gang Sha and Rulin Xiu, “Inflation Scheme Derived from Universal Wave Function Interpretation of String Theory”. Journal of Physical Science and Application, 2017, 7 (4): 33-37
xix. Feynman, Richard P.; Hibbs, Albert (1965). Quantum Mechanics and Path Integrals. McGraw Hill. ISBN 0-07-020650-3.
xx. Corbelli, E.; Salucci, P. (2000). "The extended rotation curve and the dark matter halo of M33". Monthly Notices of the Royal Astronomical Society. 311 (2): 441–447. Bibcode:2000MNRAS.311..441C . arXiv:astro-ph/9909252 .
xxi. Rubin, V.; Thonnard, N.; Ford, W. K. Jr. (1980). "Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". The Astrophysical Journal. 238: 471–487.
Cite this Article: